Developmental Changes in Auditory Brainstem Circuitry Anatomical Refinement in the Projection from the Anteroventral Cochlear Nucleus to the Lateral Superior Olive
نویسندگان
چکیده
In mammals, the basic computations required for azimuthal sound localization are performed by a group of auditory brainstem nuclei known as the superior olivary complex (SOC). The lateral superior olive (LSO), in the SOC, aids in sound localization by computing intensity differences between sounds arriving at the two ears. It does this by comparing excitatory input from the ipsilateral anteroventral cochlear nucleus (AVCN) with inhibitory input from the ipsilateral medial nucleus of the trapezoid body (MNTB), which is driven by the contralateral AVCN. In order for sounds to be accurately localized, the AVCN-LSO and MNTB-LSO projections must be aligned with each other in a frequency-dependent manner. Rough alignment occurs over the course of development, but a significant amount of circuit refinement is required to achieve adult-like precision. Two types of refinement occur in these pathways: 1) physiological, or functional refinement; and 2) anatomical refinement. Little is known about the latter type of refinement in the AVCN-LSO pathway. In order to study this, I conducted a variety of experiments all aimed at anterogradely labeling a small number of cells projecting from the AVCN to the LSO in juvenile rats. I experimented with several approaches in order to develop the technique of ex vivo, sparse axon labeling in this area of the brain. I show the optimal technique developed after testing various tracers, application methods, and incubation times, among others. This optimized technique can now be used in a future experiment that will uncover and describe anatomical refinement in the AVCN-LSO pathway of the auditory brainstem. iv ACKNOWLEDGEMENTS
منابع مشابه
Circuit Development in the Auditory Brainstem Development of Neurotransmission in the Lateral Superior Olive: Understanding Synapse Maturation in the Developing Auditory Brainstem
Principal neurons of the lateral superior olive (LSO) compute the interaural intensity differences necessary for localizing high-frequency sounds. To perform this computation, the LSO requires precisely tuned, converging excitatory and inhibitory inputs that are driven by the two ears and that are matched for stimulus frequency. In rodents, the inhibitory inputs, which arise from the medial nuc...
متن کاملFunctional Refinement in the Projection from Ventral Cochlear Nucleus to Lateral Superior Olive Precedes Hearing Onset in Rat
Principal neurons of the lateral superior olive (LSO) compute the interaural intensity differences necessary for localizing high-frequency sounds. To perform this computation, the LSO requires precisely tuned, converging excitatory and inhibitory inputs that are driven by the two ears and that are matched for stimulus frequency. In rodents, the inhibitory inputs, which arise from the medial nuc...
متن کاملComparative posthearing development of inhibitory inputs to the lateral superior olive in gerbils and mice.
Interaural intensity differences are analyzed in neurons of the lateral superior olive (LSO) by integration of an inhibitory input from the medial nucleus of the trapezoid body (MNTB), activated by sound from the contralateral ear, with an excitatory input from the ipsilateral cochlear nucleus. The early postnatal refinement of this inhibitory MNTB-LSO projection along the tonotopic axis of the...
متن کامل1 2 3 4 5 Comparative post - hearing development of inhibitory inputs to the 6 lateral superior olive in gerbils and mice 7 8 9
41 Interaural intensity differences are analyzed in neurons of the lateral superior olive (LSO) by 42 integration of an inhibitory input from the medial nucleus of the trapezoid body (MNTB), activated by 43 sound from the contralateral ear, with an excitatory input from the ipsilateral cochlear nucleus. The 44 early postnatal refinement of this inhibitory MNTB-LSO projection along the tonotopic...
متن کاملAlteration of glycine receptor immunoreactivity in the auditory brainstem of mice following three months of exposure to radiofrequency radiation at SAR 4.0 W/kg
The increasing use of mobile communication has triggered an interest in its possible effects on the regulation of neurotransmitter signals. Due to the close proximity of mobile phones to hearing-related brain regions during usage, its use may lead to a decrease in the ability to segregate sounds, leading to serious auditory dysfunction caused by the prolonged exposure to radiofrequency (RF) rad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015